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Abstract
Multipollutant indicators of mobile source impacts are developed from readily available CO, NOx,
and elemental carbon (EC) data for use in air quality and epidemiologic analysis. Two types of
outcome-based integrated mobile source indicators (IMSI) are assessed. The first is derived from
analysis of emissions of EC, CO and NOx such that pollutant concentrations are mixed and
weighted based on emission ratios for both gasoline and diesel vehicles. The emission-based
indicators (IMSIEB) capture the impact of mobile sources on air quality estimated from receptor
models and their uncertainty is comparable to measurement and source apportionment
uncertainties. The IMSIEB have larger correlation between two different receptor sites impacted by
traffic than single pollutants, suggesting they are better indicators of the local impact of mobile
sources. A sensitivity analysis of fractions of pollutants in a two-pollutant mixture and the
inclusion in an epidemiologic model is conducted to develop a second set of indicators based on
health outcomes. The health-based indicators (IMSIHB) are weighted combinations of CO, NOx
and EC pairs that have the lowest p-value in their association with cardiovascular disease
emergency department visits, possibly due to their better spatial representativeness. These
outcome-based, multipollutant indicators can provide support for the setting of multipollutant air
quality standards and other air quality management activities.

INTRODUCTION
Air quality standards, such as the National Ambient Air Quality Standards (NAAQS) in the
US, have traditionally focused on setting maximum limits to ambient concentrations of
individual pollutants. The NAAQS, and air quality standards in general, are developed from
available studies, both mechanistic and epidemiological, that seek to deduce the impacts to
human health from air pollution. To date, most air pollution epidemiologic work has
examined associations between health outcomes and individual pollutants. However, human
exposure to air pollution occurs in a multipollutant setting. Thus, a multipollutant approach
may be more realistic to understanding risks and regulating urban air pollution.
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Multipollutant approaches have been extensively applied in controlling emissions of
pollutants to the atmosphere. Pollutants are rarely emitted in isolation by a source, and
control devices for one pollutant can usually modify emissions of all of the compounds. For
example, a three-way catalytic converter for gasoline vehicles is able to control nitrogen
oxides, carbon monoxide and unburned hydrocarbons at the same time.1–2 Furthermore,
multipollutant control has been demonstrated to be cost-effective.3

From a regulatory viewpoint, multipollutant regulations already exist for emission standards.
For example, heavy and light-duty fleets are required to meet NOx, CO, PM, HC, NMHC
standards.4 In addition, EPA recently proposed the aquatic acidification index (AAI), a
multipollutant index developed based on analysis of ecological effects, to be used as part of
a potential combined NAAQS standard considering the combined effects of NOx and SOx
deposition on aquatic ecosystems.5

In the past years, substantial progress has been made to move towards a result-oriented, risk-
based, multipollutant approach in air quality management.6 A consistent limitation of
adopting this multipollutant approach has been the identification of mixtures of pollutants in
the atmosphere and the health effects of such mixtures.3, 7–8 Statistical tools, such as factor
analysis (FA), have been suggested to overcome this limitation. 9 Receptor models have also
been used to combine pollutants in source categories and source impacts have been
associated with health outcomes.10–11 However, these techniques rely on an abundant
amount of air quality data, including availability of specific components that are not
routinely measured.

Multipollutant models in epidemiologic analysis have generally included two or more
pollutants at a time within a model, with the goal of identifying confounders in associations
with health rather than the effects of a mixture of pollutants.12–15 Multipollutant models are
subject to exposure measurement error (e.g., when surrogate measurements from central
monitoring sites are used to assess human exposure), but can also have differential errors
(e.g., where the pollutant measured with the least amount of error is the one with the
strongest signals) and reduced statistical power (when more than one pollutant at a time is
included).16 Moreover, the mixtures included in multipollutant models do not always
represent an actual or unique source of emissions, which complicates designing effective
measures to improve public health.17–21

Mobile source emissions have been identified as a key urban air pollution component
adversely affecting public health.22–23 In the Atlanta area, elevated NO2, CO, PM2.5,
organic carbon (OC) and EC concentrations, pollutants traditionally related to traffic, have
been associated with Emergency Department (ED) visits for cardiovascular disease
(CVD).18, 24 Results from using receptor models in epidemiologic analysis provide further
support that combustion-related sources are associated with CVD.10

The adverse impact of mobile sources on health is due to the magnitude of these sources in
the Atlanta area, where traffic emissions are estimated to account for 30% of the PM2.5, 84%
of NOx emissions and 97% of CO emissions.25 Results from source apportionment indicate
that the contribution of tailpipe mobile source emissions to ambient PM2.5 varies from 17 to
26%, and the total impact from mobile sources is likely larger considering that a significant
amount of crustal material (i.e., Al, Si, Ca, Fe, K) originates from the re-suspension of dust
due to vehicles.26–29

Our objective in this work is to develop and assess outcome-based, multipollutant indicators
for mobile sources here called Integrated Mobile Source Indicators (IMSI). We aim to
investigate if more refined indicators of mobile sources are more likely to explain
associations with health outcomes. IMSIs are simple to construct and calculate from readily

Pachon et al. Page 2

J Air Waste Manag Assoc. Author manuscript; available in PMC 2013 August 26.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



available data, and can be used in air quality and epidemiologic analyses. The species
considered are CO, NOx and EC available from routine air quality monitoring networks.
Two sets of IMSIs are developed: the first is based on outcomes from analysis of pollutant
emissions and observed concentrations (here called IMSIEB). A sensitivity analysis is used
to refine the indicators based on two-pollutant mixtures of NOx&EC, NOx&CO and
CO&EC and develop a second set of indicators based on health outcomes (here called
IMSIHB). Temporal and spatial variability of IMSIs are assessed and compared with source
impacts from receptor models.

METHODS
IMSI development and assessment follows four steps: i) selection of pollutants and analysis
of emission inventories; ii) development of the emission-based integrated indicators
(IMSIEB); iii) comparison of air pollutant impact analysis using indicators with results from
receptor models; and iv) associations with acute health responses in Atlanta and
development of health-based indicators (IMSIHB).

Pollutant Selection and Analysis of Emission Inventories
Traditionally, CO and NOx have been used as gaseous indicators of vehicular activity. CO is
emitted primarily by gasoline-fueled engines, while both gasoline and diesel engines have
substantial NOx emissions. Mobile source based PM2.5 is generated not only via combustion
processes but also mechanical grinding and secondary formation (i.e., formation in the
atmosphere from PM2.5 precursors under photochemical conditions). Since PM2.5 can have
several sources, it is preferable to use components that are better indicators of PM2.5 from
combustion sources. PM2.5 EC and OC are formed during combustion, with OC being
produced in early stages of combustion and EC at later stages and higher temperatures.30

OC is also formed from other processes, including secondary formation from biogenic
emissions. Gasoline vehicles (GV) usually have a higher OC/EC ratio than diesel vehicles
(DV), with values around 3.0–4.0 for GV and below 1.0 for DV.31–32 Because diesel
exhaust contains much higher EC concentrations than gasoline exhaust, EC has been used as
a tracer for diesel impacts on PM.33

Other PM2.5 components, including heavy metals such as zinc (Zn), nickel (Ni), vanadium
(V), copper (Cu) and lead (Pb), have also been used as tracers to identify mobile source
impacts on air quality, and specifically to split calculated impacts between gasoline and
diesel vehicles.29 Zn is used as a tracer of GV, and is a component of additives in lubricating
oil, Pb and Cu are produced from brake wear and road traffic, and Ni and V are found in
diesel exhaust. Organic compounds, such as hopanes and polycyclic aromatic hydrocarbons
(PAHs), are used as tracers of traffic-related PM impacts as well.34–35 While these organic
compounds are very useful in the identification of specific source impacts, their
measurement is more resource intensive and their concentrations are not as widely available.

We chose CO, NOx and EC to develop the traffic-related IMSI because these species are
ubiquitous to monitoring stations in the US and emissions inventories. A detailed analysis of
CO, NOx and EC emissions and ambient air concentrations in downtown Atlanta (Fulton
County) was conducted for the period 1999–2007. Emissions from mobile sources (on-road
and non-road) were obtained from the EPA National Emission Inventory (NEI) 25 and the
Visibility Improvement State and Tribal Association (VISTAS) project.36 The 2002 EPA-
NEI was consulted for emission estimates, but estimates from earlier years are expected to
be used in the development of this inventory.

Additionally, we applied the EPA Motor Vehicle Emissions Simulator (MOVES 2010) to
identify the fraction of emissions from on-road GV and DV.37 Both NEI and MOVES use
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nation-wide information of vehicle miles traveled (VMT) to estimate on-road emissions, but
emissions factors used in MOVES 2010 have been revised from those used in NEI.

Ambient air quality data were obtained from the Jefferson Street monitoring location (JST),
a site operated by the Southeastern Aerosol Research and Characterization Study
(SEARCH). Description of the measurement methods is found elsewhere.38–39 Briefly,
elemental carbon (EC) is measured on 24-hour PM2.5 samples using quartz filters from a
particle composition monitor (PCM) and analyzed by the thermal-optical reflectance (TOR)
method at the Desert Research Institute (DRI) following the Interagency Monitoring of
Protected Visual Environments (IMPROVE) protocol (Chow et al., 1993). CO, NO and NO2
are measured every minute and averaged to the hour. CO is measured using non-dispersive
infrared spectrophotometry. NO2 is measured via photolytic conversion to NO, followed by
chemiluminescence. NO and NO2 are summed and reported as NOx. For the period 1999–
2004, a total of 1701 days were selected for use after removing days with missing data or
data with high uncertainty.

An additional site, the South DeKalb (SD) monitoring station from the EPA’s Speciation
Trends Network (STN) located 15.3 km to the southeast of JST (Fig. 1) was examined to
assess the spatial variability of IMSIEB. JST site is located within two miles of interstate
I-85 and five miles of interstate I-20, and in close proximity to the intersection of these two
highways. SD is located within two miles of interstate I-285, and in close proximity to the
intersection of this highway and I-20. Both JST and SD are heavily impacted by traffic
emissions. The air quality monitoring is conducted at street level in both sites. At SD, NOx
was available in the same number of days at JST. For CO, SD did not record measurements
before 2003, and therefore, only 562 days were available. EC is measured every third day at
SD, therefore only 462 days were available.

Carbon Monoxide (CO)—The NEI reports total CO emissions of approximately 295,000
tons/year for Fulton County in 2002, of which 97% are from mobile sources (75% on-road
and 22% non-road). The on-road CO emissions estimated with MOVES are lower
(approximately 190,000 tons/year) due to revisions in the emission factors from 1992 to
2002. MOVES estimates that 98% of the on-road CO emissions are from GV and 2% are
from DV.

On a daily basis, on-road CO emission estimates are 20% higher during weekdays than
weekends, indicating a decrease in GV travel during weekends. On a monthly basis, CO
emissions from GV have two periods of increase during the year (Fig. 2a): June through
August due to the use of air conditioning in summer, and December through February as
result of cold start emissions and lower ambient temperatures.40

Ambient CO concentrations are the lowest during the summer months (Fig. 2a), especially
during June and July when dispersion of contaminants is favored and CO photochemical
destruction is faster. The highest concentrations are found from October through December
when wind speeds are slower (Fig. S1 in the SI) and thermal inversion episodes trap
pollutants nearer the ground. From January through March inversions are still present, but
wind speeds are significantly higher than prior months resulting in greater dispersion of
pollutants.

On an annual basis, there is a clear trend between reductions in ambient air concentrations of
CO and emission reductions from 1999 to 2007 (Fig. 2b). Comparison of CO emission
estimates from MOVES and NEI in 1999, 2002 and 2005 shows good agreement between
both methods. The reduction of CO emissions in 2007 with respect to 1999 was 48% in NEI
and 45% in MOVES.
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These results support using CO concentrations as an indicator of GV impacts, though this
indicator is limited to local sources and can lead to potential biases in a regional assessment.

Nitrogen Oxides (NOx)—The NEI reports total NOx emissions of approximately 47,000
tons/year for Fulton County in 2002, of which 87% are from mobile sources (72% on-road
and 15% non-road). NOx emissions estimated with MOVES are lower than the NEI
estimates (approximately 38,000 tons/year) due to lower exhaust emissions from heavy-duty
vehicles.37 MOVES estimates that 60% of the on-road NOx emissions are from GV and
40% are from DV. Although diesel engines emit more NOx than spark ignition engines per
mile traveled, the gasoline fleet is significantly larger (about 10 times) than the diesel fleet
for Fulton County.41 Other sources contributing to NOx emissions are classified as area and
point sources, in particular fuel combustion in electrical generating utilities (EGU) and
biomass burning. It is expected, however, that most of the NOx impacting the receptor
stations come from mobiles sources, because EGU have high effective stack heights such
that pollutants are better dispersed before impacting the monitor station at the surface.
Further, NOx emissions from point sources were 13% of the total emissions in 1999, but
only 2% in 2007. EPA has estimated that nation-wide reductions of NOx are the result of
emissions reductions at electrical utilities and among on-road mobile sources.42

On a weekly basis, NOx ambient air concentrations are 24% higher on weekdays than on
weekends, consistent with a larger reduction of DV than GV traffic during weekends. On a
monthly basis, NOx follows a similar trend to CO, with higher concentrations in winter and
lower concentrations during summer (Fig. 2c) when NOx is more rapidly removed by
photochemical reactions. NOx emissions from DV are relatively constant throughout the
year, whereas NOx emissions from GV have a similar trend to CO emissions, increasing in
summer months due to the use of A/C systems and in winter months due to cold start
emissions and lower ambient temperatures.40

On a yearly basis, NOx ambient concentrations decreased from 1999 to 2001, increased
during 2002 and 2003, and decreased again until 2007 (Fig. 2d). The significant reduction
during the period 1999–2001 (from 154 to 103 ppb) is likely a result of the implementation
of the EPA acid rain program and stationary controls to reduce ozone, combined with
mobile source reductions.43 From 2002–2007, reductions in ambient NOx are attributed
largely to decreases in on-road NOx emissions. NOx emissions from on- road sources have a
stronger correlation with ambient NOx during the period 2002–2007 (R2=0.65) than 1999–
2007 (R2=0.36).

These results indicate that mobile source NOx emissions have a large impact on ambient
NOx concentrations, but are not as dominant as mobile source CO emissions on ambient CO
concentrations.

Elemental Carbon (EC)—VISTAS estimates of EC emissions for 2002 is 92% from
mobiles sources (on-road and non-road) and 8% from other sources, such as biomass
burning. From the on-road fraction, MOVES estimates 91% from DV and 9% from GV. On
a weekly basis, EC concentrations are 30% higher during weekdays than weekends, due to
the higher fraction of diesel vehicle traffic on weekdays. On a monthly basis, EC
concentrations are lowest in spring and summer as compared to the October–December
period. During the cooler months, dispersion of pollutants is not favored due to increased
thermal inversions and reduced wind speeds (Fig. 2e).

EC emissions from DV increase in summer due to an increase in VMT and greater
construction activity with the subsequent increase in non-road emissions. Although not as
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large as emissions from DV, EC emissions from GV can be an important source during
winter time because of cold starts and lower ambient temperatures.40

On an annual basis, EC concentrations decreased from 1.97 μg/m3 in 1999 to 1.13 μg/m3 in
2007 (Fig. 2f) as a result of changes in fuel composition and controls on mobile sources,
such as the introduction of low (50 ppm) and ultra low (15 ppm) sulfur diesel in 2002 and
2006, respectively44. Controls in point and open fires might also have helped on this
reduction, such as the open burning ban implemented in the 13-county metro Atlanta area in
1996. These results indicate that EC emissions are dominated by mobile sources for Fulton
County, particularly by DV.

In summary, data from Atlanta using a number of emissions and monitoring databases show
that CO and EC are likely good indicators of GV and DV, respectively. NOx appears to be
an indicator of overall mobile sources and cannot be easily used to discern between GV and
DV. Since only 20% of the total OC emissions are from mobiles sources (on-road and non-
road) 36 and a fraction between 26–47% of ambient OC can be formed secondarily45, our
development of IMSIEB does not use OC, though the indicators can be used to estimate the
OC from mobile sources.

Development of the Emission-based Integrated Indicators
We propose a multipollutant indicator of CO, NOx and EC to assess mobile source impacts
on air quality. In this work, the highest 1hr values at each day for CO and NOx were chosen
because the 1hr metric has been found more associated with health outcomes than other
metrics.18 The IMSIEB uses ratios of mobile-source-to-total emissions for each pollutant as
weighting coefficients (eq 1). Mobile source fractions of each pollutant can be estimated by
multiplying these ratios by the ambient air concentrations. For example, the fraction of
ambient EC from mobile sources is estimated here as the total EC concentration multiplied
by the ratio (EEC,mobile/EEC,total), where Ei,j represents the emission of pollutant i for source
category j, in units of tons/year estimated at Fulton County in Atlanta. Pollutant
concentrations for EC are in units of μg/m3, which differ from the units of ppm used for CO
and NOx. Therefore, a normalization of ambient air concentrations by the standard deviation
of 1701 samples for EC, CO and NOx was performed.46 The normalization is also useful in
this case since each pollutant has a different range of measurements.

(1)

where  denotes the normalized concentrations (Ci and σi represent the average
concentration and standard deviation of pollutant i in the period 1999–2007) at the Jefferson
St receptor site. The IMSIEB uses normalization by the sum of the emission ratios in such a
way that the indicator can be easily compared with other IMSI.

The ratios between mobile emissions (Ei,mobile) and total emissions (Ei,total) in eq 1 are
defined as the weighting coefficients. These weighting coefficients for NOx and CO,
obtained from the NEI database, are 0.84±0.03 and 0.97±0.01, respectively. Uncertainties in
the NOx and CO mobile/total ratios are obtained as one standard deviation of the estimated
ratios in the period 1999–2007. The weighting coefficient for EC was estimated from
VISTAS in 2002 to 0.92±0.04. Uncertainty in the EC mobile/EC total ratio is obtained as
one standard deviation of the monthly values during 2002. After replacing the values of the
weighting coefficients into eq 1, this can be expressed as:
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(2)

We were also interested in differentiating impacts from gasoline and diesel exhaust
emissions, since the contribution at the receptor site can be quite different and the control
mechanisms are specific to each type of vehicle. Therefore, we define integrated indicators
for gasoline vehicles (IMSIEB,GV) and diesel vehicles (IMSIEB,DV) using specific emission
ratios from gasoline and diesel emissions estimated with MOVES.

The ratio of gasoline-to-mobile emissions was used as a weighting coefficient for each
species, being 0.58±0.02 for NOx and 0.98±0.01 for CO, obtained from the application of
MOVES. For EC, the ratio of gasoline-to-mobile emissions is more seasonally dependent,
with a summer value of 0.06±0.01 and a winter value of 0.12±0.04. These results indicate
more weight on the CO and NOx than EC. Therefore, IMSIEB,GV was defined as a weighting
mixture of CO and NOx only:

(3)

where . After replacing the values
of the weighting coefficients into eq 3, this can be expressed as:

(4)

Similarly, the ratios of diesel-to-total mobile emissions obtained from MOVES, used as
weighting coefficients, for NOx was 0.42±0.02 and for CO 0.02±0.01. For EC, the ratio of
diesel-to-total mobile emissions was more seasonally dependent, with a summer value of
0.94±0.01 and a winter value of 0.88±0.04. These results imply more weight on EC and
NOx than CO. Therefore, IMSIEB,DV was defined as a weighting mixture of EC and NOx
only:

(5)

where . After replacing the values
of the weighting coefficients into eq 5, this can be expressed as:

(6)

Specification of the IMSIEB has limitations. First, the emission fraction for a pollutant is
translated to an ambient fraction assuming that the average source and receptor fractions are
the same. This assumption has been tested in the past with good results: gas-to- PM2.5
emission ratios were used to optimize source profiles in Atlanta, leading to a more accurate
apportionment of PM2.5 from mobile sources and coal-fire power-plants.33 A second
limitation is the assumption that emission ratios are constant on a daily basis and equal to
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the annual average. However, daily variations in the indicators are captured by the use of
ambient air concentrations.

Comparison of Air Pollutant Impact Analysis using Indicators with Results from Receptor
Models

The IMSIEB were compared with source apportionment from receptor models. The chemical
mass balance method CMBv.8.2 47 and the Positive Matrix Factorization method
PMFv3.0 48 were applied to the same period of time as the indicators. For PMF, strong
species (i.e., species with signal/noise ratio > 2.0) were NO3, SO4, NH4, EC, four OC
thermal fractions, Al, Si, Fe, K, Ca, Br, Mn, Zn and weak species (i.e., species with signal/
noise ratio < 2.0) were PM2.5, Cu, Pb, Se. The temperature-resolved OC fractions were
chosen to improve the separation between gasoline and diesel source impacts.27–28 Missing
data were replaced by their geometric mean to conserve the original number of samples for
better performance of the PMF algorithm.49 For CMB, optimized source profiles were
chosen from a previous study in Atlanta and sources, such as coal fire power plant and
cement production, were eliminated to avoid negative source impacts.33

Associations between Pollutant Mixtures and Acute Health Responses in Atlanta
We have assumed that pollutants mix based on emission ratios, but this mixture can be
influenced by meteorological conditions. The sensitivity analysis aims to assess different
fractions on which pollutants can combine once in the atmosphere. Based on the
combination of pollutants in the IMSIEB,GV and IMSIEB,DV, a sensitivity analysis was
performed between two-pollutant mixtures. For IMSIEB,GV, mixtures of CO and NOx were
evaluated and for IMSIEB,DV mixtures of EC and NOx were chosen. In addition, mixtures of
EC and CO were also evaluated. The sensitivity analysis was performed as follows.

(7)

(8)

(9)

where CEC′, CCO′ and CNOx′ represent the normalized concentrations and α is a parameter
that varies from 0 to 1, in such a way that allows comparing pollutants individually (when α
is equal to 0 or 1) versus two-pollutant mixtures. In particular, the combination of NOx&CO
at α=0.4 (i.e., 0.4*CNOx′+0.6*CCO′) is equivalent to IMSIEB,GV (eq. 4) and the
combination of NOx&EC at α=0.3 (i.e., 0.3*CNOx′+0.7*CEC′) is equivalent to IMSIEB,DV
(eq. 6).

The association of mobile source multipollutant metrics with health effects was assessed in
an epidemiologic analysis. CVD ED visits were chosen as the health endpoint for this
analysis given as those have been found to be associated with combustion-related activities
in Atlanta.10, 18 Our epidemiologic models only assess short-term effects of these pollutants
(i.e., we look at the daily measure of the indicator and see if it predicts that same day’s CVD
count). Assessing relationships between chronic exposures to the indicators (i.e., long-term
averages of the exposures) is beyond the scope of analysis. Briefly, data were collected for
ED visits related to CVD from 41 hospitals in metro Atlanta from 1999 to 2004. Daily ED
counts are regressed with air pollution indicators using a Poisson generalized linear model
(GLM). We used a similar epidemiologic model to the model applied in previous analyses of
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CVD outcomes in these data; this Poisson generalized linear model is described in more
detail elsewhere.10, 18 However, for this analysis, as well as other more recent analyses of
these data, we included more stringent control for temperature.50

Unlike traditional multipollutant models that solve for different regression coefficients, our
approach solves for only one β for a multipollutant indicator. The values of alpha at which
the two-pollutant mixtures show the strongest association with CVD define the health-based
integrated indicators (IMSIHB).

RESULTS
The assessment of the IMSIEB was conducted as follows: i) analysis of IMSIEB trends, ii)
comparison with mobile source impacts from receptor models, iii) uncertainties in the
estimation of the indicators, iv) comparison with IMSIHB derived from associations with
CVD ED visits and v) implication for multipollutant air quality standards.

IMSIEB Trends
IMSIEB exhibit similar temporal trends as ambient EC, CO and NOx, with a decrease during
summer and increase during fall and reduction in annual averages from 1999 to 2007 (Fig
3). On a monthly basis, IMSIEB,GV showed a larger reduction in concentrations during
summer than IMSIEB,DV, consistent with less commuting from light-duty traffic during the
summer months. On an annual basis, there is a larger decrease in IMSIEB,GV than
IMSIEB,DV, explained by a more rapid introduction of new control technologies in the
gasoline fleet than diesel vehicles. The comparison of IMSIEB annual averages with
reduction in emissions of CO, NOx and EC with respect to 1999 shows a similar trend
suggesting a good agreement between indicators estimated with ambient air concentrations
and emissions from mobile sources.

On a daily basis, IMSIEB is 22% larger during weekdays than weekends, capturing the
increase in traffic during the week. The IMSIEB,DV trend has a large decrease during
weekends (30%) than IMSIEB,GV (14%), and is explained by reduced diesel traffic during
the weekend.

Comparison with Results from Receptor Models
CMB and PMF methods yield similar estimates for PM air quality impacts for the chosen
sources (Table S1 in the SI). The correlation between gasoline and diesel source impacts
resolved by CMB and PMF (Table 1) was substantially lower than the correlation of the
combined fractions into one mobile source (R2=0.75/0.51 in winter/summer), which
demonstrates the difficulties receptor models have in adequately capturing the split between
gasoline and diesel daily contributions. The proposed IMSIEB correlates more strongly with
total mobile source impacts from CMB (R2=0.73/0.53 in winter/summer) than PMF
(R2=0.72/0.48 in winter/summer). The IMSIEB,DV correlates stronger with diesel source
impacts from CMB and PMF than the corresponding correlation of IMSIEB,GV with gasoline
source impacts from the receptor models. This is due to both CMB and PMF using EC as a
fitting species to solve for diesel contributions, and IMSIEB,DV is heavily weighted by EC,
whereas IMSIEB,GV uses CO, a species that is typically not used to fit the CMB or PMF
gasoline source categories.

In the southeastern US, biomass burning can also be a significant source of EC, CO and
NOx to ambient air.51 IMSIEB does not seem to be influenced by daily impacts from this
source. On selected days with biomass burning activity over 4.0 μg/m3 of PM2.5 identified
by both CMB and PMF, the integrated indicators were more strongly correlated with source
impacts from mobile sources than wood burning. On those days, the correlation between
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IMSIEB and mobile source impacts from CMB (R2=0.86) or PMF (R2=0.83) were
significantly higher than the correlation between IMSIEB and source impacts from biomass
burning from CMB (R2=0.13) or PMF (R2=0.34). This result supports the emissions
estimates and analyses detailed above that found emissions of EC, CO and NOx in Atlanta
predominantly from mobile sources.

Uncertainties in Mobile Source Indicators
Uncertainties are involved in several steps of the calculations (e.g. emission estimates,
ambient measurements, receptor models), and we estimate uncertainties in IMSIEB and
compare them with uncertainties from singles species and receptor model source
contributions. Uncertainties in ambient measurements (EC, CO, NOx) were estimated as
one-third of the detection limit (μg/m3 or ppm) plus the product of analytical uncertainty
(percentage) and concentration.52 Both detection limit and instrument uncertainty were
obtained from the SEARCH study.38 Uncertainties in CMB source impacts are estimated
using the effective variance method, which considers uncertainties in both source profiles
and ambient concentrations.31 In PMF, uncertainties in factor contributions are not given
explicitly by the model, so a bootstrapping procedure is used48. Uncertainties in IMSIEB are
propagated from individual uncertainties taking into account that CO, NOx and EC are
correlated between each other and therefore, covariance terms need to be included.53

Application of the propagation of errors in the estimation of the IMSIEB uncertainties is
explained in detail in the Supplemental Information (SI).

Among single species, CO and NOx have lower uncertainties than EC because gas species
are typically more precisely measured than filter-based PM2.5 species measurements (Table
2). The IMSIEB show uncertainties larger than the ambient measurements since uncertainties
in emissions ratios are involved in addition to the ambient measurement uncertainties.
Furthermore, the calculation of uncertainties in IMSIEB includes the uncertainty provided by
correlated quantities, as it has been demonstrated they can impact uncertainty results.54

Here, the uncertainty in IMSIEB is primarily driven by the uncertainties in the covariance
relationships between EC, CO and NOx. For IMSIEB,GV the uncertainties are driven by the
covariance relationships of CO and NOx. For IMSIEB,DV uncertainties are mostly driven by
uncertainties in EC measurements and emissions ratios and the covariance relationships of
EC and NOx.

The range of uncertainties of IMSIEB (0.51–0.68) is comparable to the range of uncertainties
in PMF (0.26–0.67), which is a typical method to estimate contributions from mobile
sources. The high range of uncertainties in CMB (1.00–1.48) is mostly explained by
uncertainties in the source profiles.31

IMSIHB Derived from Associations with CVD ED Visits
The epidemiologic model was implemented with time series of pollutant concentrations
(CO, NOx, EC), sources impacts (from CMB and PMF), IMSIEB, IMSIEB,GV, IMSIEB,DV
and the two-pollutant mixtures from the sensitivity analysis. A total of 40 metrics were
evaluated and compared for the daily association between the metric and corresponding ED
visits for CVD in the period 1999–2004. Within the single species, NOx -1hr was the most
strongly associated with CVD, followed by CO-1hr; EC was found borderline significant
(Table 3). Pollutants that are better measured such as CO and NOx typically have stronger
associations in epidemiologic models,16 and NOx has been proposed as indicator of toxic
species emitted by traffic.35 When the three pollutants are combined to form the IMSIEB, the
strength of association is only slightly greater than either for EC or CO-1hr separately, but
less than NOx -1hr. Using IMSIEB,GV and IMSIEB,DV as a predictors of CVD-related ED
visits in the model resulted in statistically significance associations. Gasoline and diesel
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source impacts from CMB and PMF were not found to be significantly associated with
CVD. The lack of significance may be due to the use of EC as a fitting species in both CMB
and PMF. Differences in time periods, health outcomes and analytic methods (e.g., tighter
controls in the epidemiologic analyses) may explain the significant association between
mobile source daily contributions and CVD found in other studies in the Atlanta area.10, 18

The inclusion of the two-pollutant mixtures (NOx&EC, NOx&CO, CO&EC) in the
epidemiologic model is represented in three curves with a minimum point where the
association with CVD is strongest (Fig. 4). The minimum point suggests that the
combinations of pollutants at specific fractions are more likely to explain associations with
health outcomes than individual species. The minimum point in the curves occurs at α=0.6
for NOx&CO, at α=0.7 for NOx&EC and at α=0.5 for CO&EC. It would seem reasonable
that a large fraction of NOx in the NOx&CO and NOx&EC pairs would give a stronger
significance to the association with CVD outcomes, but this is not the case. Similarly, for
the CO&EC pair one could also expect that a larger fraction of CO in the mixture would
give greater significance. The minimum occurs when both pollutants are approximately
equally weighted.

The points where the association of the two-pollutant mixtures and CVD is strongest defined
the health-based indicators. That is, we define IMSIHB,NC at α=0.6 for NOx&CO,
IMSIHB,NE at α=0.7 for NOx&EC, and IMSIHB,CE at α=0.5 for CO&EC. Pollutants used in
the two-pollutant IMSIHB are denoted by a subscript, e.g., “NE” for NOx and EC mixture.
The IMSIHB hold different fractions of pollutants than the IMSIEB, suggesting that other
sources, such as biomass burning, may be contributing in the association with CVD though
the p-values are relatively constant between both integrated indicators. The advantage of
using IMSIEB is that specific control mechanisms can be suggested to mobile sources
facilitating the work of policy-makers.

The IMSIs and the two-pollutant mixtures showing different associations with CVD
outcomes at different α values can be partially explained by the correlations between
individual pollutants and the two-pollutant mixture and more clearly by the correlation
between indicators at two different receptor sites.

With respect to the first explanation, the correlation of each pair of pollutants and the third
pollutant not included in the pair changes with the α fraction (Fig. 5). For example, the
correlation between the NOx&EC mixture and CO has a maximum value at α =0.5
(R2=0.63), which is larger than the correlation between CO and EC (R2=0.49) or CO and
NOx (R2=0.55). Similarly, the binary mixtures NOx&CO and CO&EC have stronger
correlations with EC and NOx at α=0.4 and α=0.6 respectively.

A higher correlation of a binary mixture with a third pollutant more strongly associated with
CVD, may explain the higher association of that mixture with the health outcome. For
example, the strongest association of the CO&EC mixture with CVD at α=0.5 (Fig. 4)
might be explained by the higher correlation of the CO&EC pair and NOx at that particular
alpha (Fig. 5). However, this is not the case for NOx&EC and NOx&CO pairs which already
include the statistical power of NOx in the health association.

A more clear explanation can be found in the correlation between indicators at different
receptor sites. We observe that the correlations between pairs of pollutants estimated at JST
and the corresponding pairs calculated at SD are stronger at certain value of α than others
(Fig. 6). These values are α=0.5 for NOx&EC (R2=0.72) and NOx&CO (R2=0.72) and
α=0.4 for CO&EC (R2=0.76). The correlations between pair of pollutants at JST and SD are
stronger than the correlations between single pollutants at both receptor sites (R2=0.64 for
EC; R2=0.55 for CO; R2=0.59 for NOx). Previous studies have found that for pollutants with
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large spatial error, health associations are likely attenuated.55 Pollutant mixtures having a
stronger correlation between sites than single pollutants may offer a better explanation of the
stronger association with health.

As a result of the greater correlation between sites, IMSIEB,GV and IMSIEB,DV constitute
better indicators for mobile sources which are expected to be ubiquitous in the area. This
result complements a previous analysis in which mobile source impacts were classified as
having “intermediate” spatial representativeness of the Atlanta area due to the lack of a
unique marker (EC was used as the only mobile tracer).56 Using IMSIEB, mobile source
impacts show a more robust representativeness in the area.

Finally, the association of pollutant mixtures with health outcomes could be related to
interaction between pollutants as has been shown in laboratory studies.12 This hypothesis
needs further study.

Implications for Multipollutant Air Quality Standards
IMSIEB and IMSIHB can provide support to the setting of multipollutant air quality
standards in a manner similar to that used in the development of the aquatic acidification
index (AAI).5 The AAI was designed to take into account the combined effects of NOx and
SOx in the acidification of aquatic ecosystems, given that these two species are linked from
atmospheric chemistry. Similarly, IMSIHB assess the effects of mixtures of pollutants
associated with mobile sources on health and IMSIEB assess mixtures representing the
gasoline and diesel vehicle impacts on air quality. Since mobile sources and their
composition are ubiquitous, it is expected that the integrated indicators can be applied in
other cities. IMSIs are simple to construct and calculate and can be estimated at any
monitoring site where EC, CO and NOx concentrations are available.

CONCLUSIONS
This study proposed an approach to develop multipollutant indicators based on analysis of
emissions inventories and health outcomes. The IMSIEB are simple to construct and
calculate and demonstrate advantages over the use of single species: IMSIEB have stronger
correlation between two different receptor sites than single pollutants, suggesting they are
better indicators of the local impact of mobile sources, they agree well with the observed
trends of traffic and they have stronger associations with observed health effects, possibly
due to their stronger correlation between sites. Uncertainties in IMSIEB are similar to
uncertainties in ambient measurements and receptor models. A sensitivity analysis of
fractions in IMSIEB led to the development of IMSIHB, suggesting mixtures of pollutants
more strongly associated with CVD outcomes.

The use of IMSIs in epidemiologic modeling constitutes an alternative approach to assess
the health impact of pollutant mixtures. Although the approach presented in this manuscript
was developed for mobile sources, this work can be extended to other sources. IMSI can
support the setting of multipollutant air quality standards since they represent the impact of
traffic on health.
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Figure 1.
Location of Jefferson Street (JST) and South DeKalb (SD) monitoring stations in Atlanta.
Area in gray is Fulton County in Atlanta.
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Figure 2.
Monthly and annual trends of CO, NOx and EC. Bars represent emissions estimates from
MOVES in tons/month (a, c, e) or tons/yr (b, d, f). Bold line represents ambient air
concentrations of CO (ppm), NOx (ppb) and EC (μg/m3) on right vertical scale. Error bars
are the root mean square (RMS) error of daily uncertainties from measurements. R2 denotes
the correlation between annual emissions and annual average concentrations.
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Figure 3.
Temporal trends (a) monthly (b) annual of IMSIEB, IMSIEB,GV and IMSIEB,DV (unitless).
The indicators are normalized such as they have a standard deviation of one. Annual trend is
compare with reduction in emissions of CO, NOx and EC with respect to 1999 (on right y
axes).
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Figure 4.
Sensitivity analysis of the association between pairs of pollutants and CVD outcomes; the
dashed line represents p-value = 0.05.
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Figure 5.
Correlation (R2) between binary mixtures and the pollutant not included in the mixture
(NOx&EC vs CO; NOx&CO vs EC; CO&EC vs NOx). Vertical scale starts at 0.3 to
emphasize correlations.
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Figure 6.
Correlation (R2) between binary mixtures at two different receptor sites JST and SD.
Vertical scale starts at 0.3 to emphasize correlations. Overlapped days at JST and SD:
NOx&EC (n=398), NOx&CO (n=560) and CO&EC (n=173).
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Table 2

Comparison of uncertainties between indicators

Indicator Indicator value€ Standard deviation£ Uncertainty¥ Relative uncertainty

CO 1h (ppm) 1.16 1.00 0.16 0.14

NOx 1h (ppm) 0.12 0.10 0.03 0.25

EC (μg/m3) 1.53 0.97 0.64 0.42

IMSIEB 1.31 0.90 0.72 0.55

IMSIEB,GV 1.17 0.96 0.80 0.68

IMSIEB,DV 1.48 0.94 0.76 0.51

PMFmob 2.94 2.30 1.11 0.38

PMFGV 1.37 1.21 0.36 0.26

PMFDV 1.57 1.65 1.05 0.67

CMBmob 2.54 1.70 2.53 1.00

CMBGV 1.34 1.15 2.00 1.48

CMBDV 1.27 1.02 1.60 1.26

Notes:

€
Average of daily values from 1999–2004;

£
For daily values from 1999–2004;

¥
Uncertainties are estimated as the RMS average  of daily uncertainties from 1999–2004.
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Table 3

Results for the associations of ED for CVD with mobile source impacts metrics (sorted by p-value)

Indicator IQR€ RR£ per IQR 95% CI¥ p-value

CMB-DV 1.0 μg/m3 1.005 0.997 – 1.014 0.206

PMF-GV 2.3 μg/m3 1.005 0.997 – 1.012 0.206

PMF-DV 2.3 μg/m3 1.006 0.998 – 1.014 0.168

CMB-GV 1.0 μg/m3 1.006 0.999 – 1.012 0.079

EC 1.0 μg/m3 1.008 1.000 – 1.017 0.054

CO-1h 0.9 ppm 1.007 1.001 – 1.014 0.033

IMSIEB 0.9 1.007 1.001 – 1.014 0.029

IMSIEB,DV 0.7 1.010 1.001 – 1.018 0.022

NOx -1h 0.1 ppm 1.008 1.001 – 1.015 0.018

IMSIEB,GV 0.8 1.009 1.002 – 1.017 0.018

Notes:

€
Interquartile range;

£
Risk ratio;

¥
Confidence Interval; CMB is the Chemical Mass Balance method; PMF is the Positive Matrix Factorization model; GV stands for gasoline

vehicles; DV stands for diesel vehicles; IMSIEB is the emission-based integrated mobile source indicator; IMSIEB,GV is the IMSIEB estimated

for gasoline vehicles; IMSIEB,DV is the IMSIEB estimated for diesel vehicles.
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